

Biophysical Chemistry 76 (1999) 73-82

Effect of cation and anion of an electrolyte on apparent molar volume, isentropic compressibility and refractive index of glycine in aqueous solutions

Ana Soto^a, Alberto Arce^a, Mohammad K. Khoshkbarchi^{b,*}

^aDept. of Chemical Engineering, University of Santiago de Compostela, Santiago E-15706, Spain ^bHyprotech Ltd., 300, 1110 Centre Street North, Calgary, Alberta T2E 2R2, Canada

Received 18 August 1998; received in revised form 16 November 1998; accepted 17 November 1998

Abstract

Experiments at 298.15 K have been performed to measure the density, velocity of sound and refractive index in three water + glycine + electrolyte systems. The electrolytes studied were KCl, KNO₃ and NaNO₃. The values of apparent molar volume and isentropic compressibility of glycine in aqueous electrolyte solutions were calculated from the measured data. The results obtained in this study and those reported previously for water + glycine + NaCl system have been comparatively studied. The results show that the nature of both the cation and the anion of an electrolyte influence the behaviour of glycine in aqueous solutions. For all four electrolytes studied, the comparison shows a positive volume transfer for glycine from an electrolyte solution to a more concentrated solution of the same electrolyte. The results also show a negative apparent isentropic compressibility for glycine in the presence of the electrolytes studied. These effects indicate that the volume of a glycine molecule is larger in solutions with higher electrolyte concentration and the water molecules around the glycine molecules are less compressible than the water molecules in the bulk solution. These effects were attributed to the doubly charged behaviour of glycine and to the formation of physically bonded ion-pairs between the charged groups of glycine and the cation and the anion of the electrolyte. © 1999 Elsevier Science B.V. All rights reserved.

Keywords: Cation; Anion; Glycine; Isentropic compressibility; Molar volume; Refractive index

1. Introduction

The interactions between charged biomolecules and ions can highly influence their behaviour and

conformation in aqueous solutions. The study of these interactions provides an insight into the conformational stability and unfolding behaviour of some biomolecules, such as globular proteins. This study also has application in the development and design of separation processes containing electrolytes, such as electrolyte-induced precipitation of biomolecules. However, the complex

^{*}Corresponding author. Hyprotech Ltd., 300, 1110 Centre Street North, Calgary, Alberta T2E 2R2, Canada

structure of most biomolecules makes it difficult to study the effect of different factors influencing their behaviour. Amino acids are the simplest biomolecules, which are the building blocks of other more complex biomolecules, such as proteins and antibiotics. Thus, they can be used as the model compound for the study of the behaviour of complex biomolecules. In addition, in the absence of the experimental data for large biomolecules, it would be desirable to predict their properties from the properties of their constituent amino acids using a group contribution method.

Among thermodynamic properties, which directly or through other exact thermodynamic relations represent the interactions in a system, partial molar volume and isentropic compressibility are particularly important. This is due to the fact that not only do they provide important information about the interactions and the behaviour of molecules in solutions, they can be measured accurately. Measurement of the partial molar volume and isentropic compressibility of amino acids in aqueous solutions without the presence of an electrolyte has been the subject of several studies [1–5]. Some studies have also been conducted to calculate the properties of complex biomolecules from the properties of their constituent amino acids. For example, Iqbal and Verrall [2] showed that the partial-specific volumes of some proteins could be calculated, with a reasonable accuracy, from the partial-specific volume of their constituent amino acids. Despite the ample use and importance of amino acids in many industries, their interactions with electrolytes and physicochemical properties in electrolyte solutions have been the subject of few investigations [6,7]. Recently, we have reported the partial molar volume and isentropic compressibility and refractive index in water + glycine + NaCl solutions and developed a model to correlate the experimental data [8]. The results of this study and other previously measured data revealed that the presence of an electrolyte greatly influences the behaviour of amino acids in solutions.

In this study experiments at 298.15 K have been performed to measure the density, sound velocity and refractive index in three water +

glycine + electrolyte systems. The electrolytes studied are KCl, KNO $_3$ and NaNO $_3$. The values of apparent molar volume, V_ϕ , and apparent molar isentropic compressibility, K_ϕ , were calculated from the measured data. To determine the effect of the anion and the cation of an electrolyte on its interactions with glycine the results obtained from this study and those reported previously for water + glycine + NaCl system [8] are comparatively studied.

2. Materials and methods

Potassium chloride, potassium nitrate and sodium nitrate with nominal purity of greater than 99.0 mass% were purchased from SIGMA (Madrid, Spain) and were oven-dried for 72 h prior to use. Glycine with a purity of greater than 99.0 mass% was purchased from ICN (Barcelona, Spain) and was used without further purification. In all experiments deionized water produced by a Milli-Q water deionizer was used. Prior to the use, the deionized water was ultrasonically degassed. The pH of the deionized water was measured on a Mettler Toledo MP225 and it was equal 7.0.

All the solutions were prepared by weight on a Mettler AE 240 balance precise to within ± 0.0001 g. In order to prepare the solutions under investigation, aqueous solutions of each salt at different concentrations were first prepared. Known amount of glycine was then added to a salt solution prepared in advance and stirred until a homogeneous solution was obtained.

The densities and sound transmission speeds of the mixtures were measured on an Anton Paar DSA-48 densimeter and sound analyser. The instrument precision was within $\pm 0.0001\,\mathrm{g/cm^3}$ for the density and $\pm 1.0\,\mathrm{m/s}$ for the velocity of sound. The refractive indices were measured on an ATAGO RX-1000 refractometer precise to within ± 0.0001 . In order to maintain the sample temperature constant during the experiments, all the instruments were equipped with a thermostatic bath and the temperature was kept constant at $298.15\pm0.02~\mathrm{K}$ throughout the experiments. All measurements were repeated three

times for each sample, and were repeatable to within the precision quoted for each apparatus.

3. Results and Discussion

The measured values at 298.15 K of density, sound velocity and refractive index in water + glycine + KCl, water + glycine + NaNO₃ and water + glycine + KNO₃ systems are presented in Tables 1–3, respectively. The values of the apparent molar volumes, V_{ϕ} , and apparent molar isentropic compressibility, K_{ϕ} , of glycine in solutions with different electrolyte concentration were calculated from the following relations:

$$V_{\phi} = \frac{M}{\rho} - \frac{\rho - \rho_0}{m \rho \rho_0} \tag{1}$$

$$K_{\phi} = \frac{M\kappa_{S}}{\rho} - \frac{\kappa_{S0} \rho - \kappa_{S} \rho_{0}}{m\rho\rho_{0}}$$
 (2)

where M denotes the molecular weight of glycine, m is the molality of glycine, ρ and ρ_0 are the densities of the solution and the solvent, respectively. The terms κ_S and κ_{S0} in Eqs. (1) and (2) refer, respectively to the isentropic compressibilities of the solution and the solvent calculated from the velocity of sound, u, according to the following relation:

$$\kappa_{S} = \frac{1}{u^{2}\rho} \tag{3}$$

The values of V_{ϕ} and K_{ϕ} of glycine at different electrolyte molalities, calculated from Eqs. (1)–(3), are also presented in Tables 1–3. It is important to mention that for systems containing

Table 1
Measured values of density, sound velocity and refractive index, and calculated values of apparent molar volume and isentropic compressibility in water + glycine + KCl system

Glycine molality	Density (kg/m ³)	Sound velocity (m/s)	Refractive index	$V_{\phi} \times 10^6$ (m ³ /mol)	$K_{\phi} \times 10^{15}$ (m ³ /kPa.mol)
		velocity (iii/ 9)	maca	(m / mor)	(111 / 121 14111101)
KCl concentra					
0.000	997.0	1497	1.3325	-	_
0.4972	1012.4	1523	1.3389	43.46	-25865.1
1.0226	1027.4	1548	1.3454	44.05	-23312.9
1.4867	1039.9	1569	1.3508	44.36	-21830.6
1.9724	1052.2	1591	1.3562	44.67	-19818.5
2.4091	1062.6	1609	1.3606	44.94	-19074.2
2.9291	1074.3	1630	1.3657	45.24	-17724.4
KCl concentra	ation = 0.2 m				
0.0000	1006.4	1508	1.3344	_	_
0.4776	1020.6	1532	1.3405	44.60	-21892.8
1.0035	1035.3	1557	1.3469	44.87	-20256.0
1.4535	1047.1	1577	1.3520	45.12	-18857.7
2.0076	1060.7	1600	1.3580	45.43	-17257.6
2.2753	1067.0	1612	1.3607	45.55	-16883.1
2.7854	1078.4	1632	1.3658	45.79	-15729.2
KCl concentra	ation $= 0.4 \text{ m}$				
0.0000	1015.4	1518	1.3365	_	_
0.4763	1029.2	1541	1.3424	45.21	-19180.8
0.9772	1042.8	1564	1.3483	45.50	-17786.1
1.4701	1055.3	1586	1.3538	45.80	-16686.2
1.9790	1067.6	1607	1.3592	45.98	-15507.1
2.4186	1077.5	1625	1.3635	46.20	-14678.7
2.7146	1083.9	1637	1.3664	46.33	-14199.3

Table 1 (Continued)

Glycine molality	Density (kg/m^3)	Sound velocity (m/s)	Refractive index	$V_{\phi} \times 10^6$ (m ³ /mol)	$K_{\phi} \times 10^{15}$ (m ³ /kPa.mol)
KCl concentra	ation = 0.6 m				
0.0000	1024.3	1528	1.3383	_	_
0.5000	1038.4	1552	1.3445	45.78	-17499.5
0.9985	1051.5	1574	1.3502	46.10	-15818.5
1.4763	1063.3	1595	1.3554	46.34	-14919.4
1.9702	1074.8	1615	1.3606	46.56	-13828.2
2.4462	1085.2	1634	1.3653	46.78	-12994.9
2.7863	1092.4	1646	1.3684	46.87	-12286.7
KCl concentra	ation = 0.8 m				
0.0000	1032.9	1537	1.3401	_	_
0.4928	1046.4	1560	1.3460	46.39	-15431.4
0.9812	1058.9	1582	1.3516	46.66	-14441.3
1.4759	1070.8	1602	1.3570	46.89	-13070.1
1.8945	1080.3	1619	1.3612	47.06	-12338.5
2.3520	1090.2	1637	1.3657	47.22	-11633.5
2.9707	1102.8	1660	1.3713	47.41	-10715.0
KCl concentra	ation = 1.0 m				
0.0000	1041.4	1547	1.3419	_	_
0.5067	1054.9	1570	1.3479	46.91	-13523.8
0.9916	1066.9	1590	1.3534	47.21	-12018.3
1.5464	1079.9	1613	1.3591	47.37	-11281.4
2.1100	1092.2	1635	1.3647	47.56	-10440.3
2.4578	1099.3	1648	1.3680	47.71	-9922.0
3.0010	1109.9	1668	1.3729	47.89	-9259.9

both electrolyte and glycine, water + electrolyte is considered as the solvent. As the linear trends of the V_{ϕ} and K_{ϕ} experimental data with respect to glycine molality suggest, their values at a fixed electrolyte molality are correlated with the molality of glycine using the following relations:

$$V_{\phi} = V_{\phi}^0 + \chi_{\nu} m_A \tag{4}$$

$$K_{\phi} = K_{\phi}^0 + \chi_S m_A \tag{5}$$

where m_A is the molality of glycine, V_ϕ^0 and K_ϕ^0 are, respectively the infinite dilution apparent molar volume and infinite dilution apparent molar isentropic compressibility of glycine χ_v and χ_S and are two empirical parameters. The values of these parameters can be calculated by fitting the values of V_ϕ and K_ϕ to the molality of glycine at a fixed electrolyte molality using Eqs. (4),(5), respectively. The values of V_ϕ^0 and K_ϕ^0 of glycine

together with the values of χ_v and χ_s at different KCl, KNO₃ or NaNO₃ concentrations are presented in Table 4. These values provide valuable information about the interactions between glycine and the solvent (water + electrolyte) as at infinite dilution the interactions between glycine molecules are negligible.

Fig. 1 depicts the effect of glycine concentration on its apparent molar volume at two KCl, NaCl, KNO₃ or NaNO₃ molalities. As similar behaviour was observed throughout the whole range of electrolyte concentration studied and for the sake of clarity, only electrolyte molalities equal to 0.4 and 0.8 are shown. The experimental data for water + glycine + NaCl, shown in Fig. 1, are obtained from a previous study [8]. As shown in this figure the value of V_{ϕ} of glycine for all four electrolytes studied increases as the concentration of either glycine or the electrolyte increases. This indicates that glycine molecules are larger in

Table 2 Measured values of density, sound velocity and refractive index and calculated values of apparent molar volume and isentropic compressibility in water + glycine + NaNO $_3$ system

Glycine molality	Density (km/m ³)	Sound velocity (m/s)	Refractive index	$V_{\phi} \times 10^6$ (m ³ /mol)	$K_{\phi} \times 10^{15}$ (m ³ /kPa.mol)	
	<u> </u>	(/ 5/		(<i>,,</i>	(/	
-	ntration = 0.2 m					
0.0000	1008.1	1506	1.3342	_	- 22 109 5	
0.5128	1023.4	1532	1.3406	44.43	-22198.5	
0.9824	1036.4	1554	1.3464	44.86	-20263.1	
1.5054	1050.1	1578	1.3524	45.13	-18939.2	
2.0016	1062.2	1599	1.3575	45.43	-17545.3	
2.4845	1073.3	1619	1.3624	45.69	-16465.0	
2.9884	1084.2	1639	1.3673	45.94	-15436.5	
NaNO ₃ conce	ntration = 0.4 m					
0.0000	1018.9	1515	1.3360	_	_	
0.5027	1033.4	1540	1.3422	45.25	-19760.2	
0.9918	1046.6	1562	1.3479	45.53	-17 785.1	
1.5193	1059.9	1586	1.3538	45.84	-16736.0	
1.9532	1070.2	1604	1.3584	46.06	- 15 644.1	
2.5028	1070.2	1627	1.3639	46.31		
					-14 673.6	
2.9456	1091.8	1644	1.3680	46.51	- 13 800.0	
	ntration = 0.6 m					
0.0000	1029.5	1523	1.3377	_	-	
0.4791	1042.9	1547	1.3436	45.93	-18310.4	
1.0125	1056.8	1571	1.3497	46.25	-16196.4	
1.4414	1067.4	1590	1.3545	46.40	-15281.3	
1.9387	1078.9	1611	1.3596	46.64	-14226.8	
2.4779	1090.7	1633	1.3648	46.83	-13282.5	
2.9959	1101.3	1653	1.3697	47.02	-12404.0	
NaNO ₂ conce	ntration = 0.8 m					
0.0000	1039.8	1531	1.3394	_	_	
0.4964	1053.2	1555	1.3456	46.62	-15843.8	
1.0102	1066.2	1579	1.3512	46.83	-14862.3	
1.4942	1077.8	1600	1.3563	46.96	-13793.3	
1.9881	1077.8	1620	1.3613	47.17	- 12 677.5	
2.6514	1102.7	1646	1.3677	47.38	-12 077.5 -11 553.0	
2.0314 3.0404	1102.7	1661	1.3712	47.52	-11 333.0 -11 007.1	
J.U4U4	1110.3	1001	1.3/12	41.32	-11007.1	
	ntration = 1.0 m					
0.0000	1049.9	1539	1.3411	_	_	
0.4979	1063.0	1563	1.3470	47.04	-14519.6	
1.0270	1076.0	1587	1.3528	47.27	-13284.8	
1.4026	1084.7	1603	1.3569	47.42	-12433.4	
2.0006	1097.7	1627	1.3628	47.65	-11210.3	
2.4136	1106.2	1643	1.3668	47.78	-10542.0	
2.8993	1115.6	1662	1.3713	47.94	- 9944.4	

volume in solutions with higher electrolyte concentration. It can also be seen that for a fixed glycine and electrolyte concentration the nature of both the cation and the anion of the electrolyte affect the value of V_{ϕ} of glycine. As also shown in this figure, for two electrolytes with the same

Table 3 Measured values of density, sound velocity and refractive index and calculated values of apparent molar volume and isentropic compressibility in water + glycine + KNO $_3$ system

Glycine molality	Density (kg/m^3)	Sound velocity (m/s)	Refractive index	$V_{\phi} \times 10^6$ (m ³ /mol)	$K_{\phi} \times 10^{15}$ (m ³ /kPa.mol)	
KNO ₃ concen	tration = 0.2 m					
0.0000	1009.3	1504	1.3342	_	_	
0.5048	1024.3	1530	1.3407	44.54	-22558.6	
0.9991	1038.0	1553	1.3467	44.90	-20306.7	
1.5086	1051.2	1576	1.3524	45.23	-18802.1	
2.0144	1063.5	1598	1.3579	45.52	-17565.1	
2.4428	1073.3	1616	1.3622	45.75	-16623.7	
2.4428 3.0409	1075.5	1639	1.3679	46.01	-15023.7 -15293.4	
5.0409	1000.5	1039	1.50/9	40.01	- 13 293.4	
KNO ₃ concen	tration $= 0.4 \text{ m}$					
0.0000	1021.2	1511	1.336	-	_	
0.4836	1035.1	1535	1.3418	45.33	-19660.6	
1.0024	1049.0	1559	1.3482	45.67	-17921.2	
1.4484	1060.2	1579	1.3531	45.93	-16828.5	
1.9568	1072.3	1601	1.3584	46.16	- 15 770.4	
2.4815	1084.0	1622	1.3637	46.39	-14616.1	
2.8727	1092.2	1638	1.3673	46.57	-13 988.0	
2.0727	10,2.2	1030	1.50/5	10.57	13 700.0	
	tration $= 0.6 \text{ m}$					
0.0000	1032.9	1517	1.3378	_	_	
).4996	1046.7	1542	1.344	46.17	-18072.9	
.0411	1060.6	1566	1.3502	46.49	-15813.4	
.5567	1073.1	1589	1.3559	46.65	-14888.0	
2.0293	1083.8	1609	1.3607	46.86	-13975.6	
2.5001	1093.9	1628	1.3653	47.03	-13125.1	
2.8545	1101.1	1641	1.3685	47.17	-12394.5	
VNO concen	tration = 0.8 m					
0.0000	1044.2	1523	1.3394		_	
				- 46 90	140070	
0.5115	1057.8	1547	1.3456	46.89	-14907.9	
1.0321	1070.8	1571	1.3514	47.05	-14 192.1	
1.5101	1082.0	1592	1.3565	47.22	-13356.4	
2.0326	1093.5	1613	1.3618	47.41	-12258.4	
2.5410	1104.1	1634	1.3666	47.54	-11629.8	
2.8611	1110.4	1646	1.3695	47.65	-11098.0	
KNO₂ concen	tration = 1.0 m					
0.0000	1055.3	1529	1.3410	_	_	
0.5200	1068.7	1553	1.3471	47.39	-13243.9	
1.0475	1081.4	1577	1.3528	47.58	-13243.9 -12608.0	
1.5515	1092.8	1599	1.3582	47.73	- 12 884.5	
	1103.6	1619	1.3633	47.73		
2.0640					-10810.5	
2.5458	1113.3	1638	1.3677	48.04	-10178.8	
3.0169	1122.2	1656	1.3720	48.17	-9597.2	

anion, the value of V_{ϕ} of glycine is larger in the presence of the electrolyte with potassium cation than the electrolyte with sodium cation. Similarly,

for two electrolytes with the same cation the value of V_{ϕ} of glycine is larger in the presence of the electrolyte with nitrate anion than the elec-

Table 4 Calculated values of $V_{\phi}^{0}(\text{m}^{3}/\text{mol})$, $K_{\phi}^{0}(\text{m}^{3}/\text{kPa.mol})$ and the slopes of Eqs. (4) and (5), $\chi_{v}(\text{kg.m}^{3}/\text{mol}^{2})$ and χ_{S} (kg.m³/kPa.mol²), obtained from the fitting of the experimental data

Molality	0.0	0.2	0.4	0.6	0.8	1.0
Electrolyte: KCl						
$V_{\phi}^{0} \times 10^{6}$	43.235	44.356	45.018	45.594	46.246	46.777
$\chi_v \times 10^6$	0.70817	0.52263	0.49065	0.47751	0.40948	0.37596
$K_{\phi}^{0} \times 10^{15}$	-26954.0	-22963.1	-20054.4	-18282.2	-16207.0	-13964.6
$\chi_S \times 10^{15}$	3305.03	2689.44	2220.87	2195.63	1928.98	1633.94
Electrolyte: NaNO ₃						
$V_{\phi}^{0} \times 10^{6}$	43.235	44.209	45.020	45.776	46.457	46.880
$\chi_v \times 10^6$	0.70817	0.59347	0.51493	0.42614	0.35119	0.37291
$\chi_v \times 10^6 \ K_\phi^{0} \times 10^{15}$	-26954.0	-23153.1	-20464.1	-18824.4	-16745.6	-15282.7
$\chi_S \times 10^{15}$	3305.03	2679.78	2341.33	2246.87	1941.52	1929.65
Electrolyte: KNO ₃						
$V_{\phi}^{0} \times 10^{6}$	43.235	44.310	45.140	46.010	46.729	47.249
$\chi_v \times 10^6$	0.70817	0.58005	0.50820	0.41091	0.32300	0.31080
$\chi_{\nu} \times 10^{6} \ K_{\phi}^{0} \times 10^{15}$	-26954.0	-23382.4	-20448.3	-18665.9	-15806.4	-14111.1
$\chi_S \times 10^{15}$	3305.03	2772.91	2333.26	2263.66	1658.57	1520.93

trolyte with chloride anion. These effects can be explained by the fact that the amino and the carboxyl groups of glycine in aqueous solutions dissociate and become, respectively positively and negatively charged. In the presence of an electrolyte, this leads to the formation of physically bonded ion-pairs between the charged groups of glycine and the cation and the anion of the electrolyte. This increases the apparent molar volume of glycine and reduces the electrostatic interactions between glycine molecules and free simple ions as well as water molecules. It should be mentioned that the bonds forming the ion-pairs are physical and non-covalent in nature. The formation of the ion-pairs also decreases the hydrophobicity of the glycine molecules arisen from the interactions of the hydrocarbon backbone of glycine with water molecules. This results in a more favourable interaction between glycine and water molecules, which in turn increases the hydration number of glycine. This effect is also reflected in the values of V_{ϕ}^{0} , presented in Table 4, which for all four electrolytes studied increase with an increase in the electrolyte concentration. The formation of ion-pairs between charged amino acids and ions have been shown and discussed in several previous investigations. A complete review of these investigations is published by Collins [9]. The results of these studies in general agree on the formation of ion-pairs and the fact that the presence of an electrolyte in an aqueous solution of an amino acid results in the condensation of the cation and the anion of the electrolyte on the charged groups of the amino acid and thereby their neutralization. It has also been shown that this phenomenon is the reason for the influence of the electrolytes on the solubility of amino acids [9,10] in aqueous solutions. The effect of the nature of the cation and the anion of the electrolyte on the value of V_{ϕ} can also be attributed to the formation of the ionpairs. As sodium ion has a smaller ionic volume than potassium ion [11], for a fixed glycine and electrolyte concentration the ion-pairs formed with sodium ion have smaller apparent molar volume than the ion-pairs formed with potassium ion. The same argument holds for the apparent molar volume of the ion-pairs formed with glycine and chloride or nitrate ion. This trend can be observed by comparing the values of V_{ϕ}^{0} of glycine for the four electrolytes studied at different electrolyte molalities, shown in Fig. 2. As can be seen from this figure, V_{ϕ}^{0} increases as the concentration of the electrolyte increases. It can also be

seen that for a fixed electrolyte concentration V_{ϕ}^{0} of glycine depends on the size of the constituent ions of the electrolyte present in the solution. For example, the value of V_{ϕ}^{0} of glycine is larger in the presence of KCl then NaCl. It is important to mention that the presence of an electrolyte can change the protonation behaviour of glycine, which in turn may result in the formation singly charged forms of glycine in the solution. Experimental data for the effect of the concentration of NaCl and KNO₃ on the first and second dissociation constants of glycine [12,13] show that in the absence of a strong proton donor or acceptor the presence of an electrolyte does not result in the formation of singly charged glycine molecules. According to these experimental data, the conditions under which our experiments have been performed ensure that the formation of different charged forms of glycine do not interfere with our results. The high quality of the water used in the experiments and its neutral pH value also minimized the possibility of the formation of singly charged glycine molecules.

Fig. 3 depicts the effect of glycine concentration on its isentropic compressibility in the presence of KCl, NaCl, KNO₃ or NaNO₃. As similar behaviour was observed throughout the whole range of electrolyte concentration studied and for

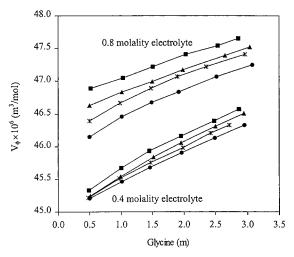


Fig. 1. Effect of glycine concentration on the value of V_{ϕ} of glycine in aqueous solutions of 0.4 and 0.8 molality \bullet : NaCl, *: KCl, \blacktriangle : NaNO₃, \blacksquare : KNO₃.

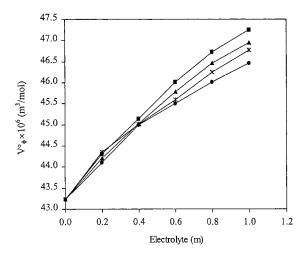


Fig. 2. Effect of electrolyte concentration on the value of V_{ϕ}^{0} of glycine. \bullet : NaCl, *: KCl, \blacktriangle : NaNO₃, \blacksquare : KNO₃.

the sake of clarity, only electrolyte molalities equal to 1.0 are shown. The experimental data for water + glycine + NaCl, shown in Fig. 3, are obtained from a previous study [8]. From Fig. 3 it can be seen that the value of K_{ϕ} of glycine is negative throughout the entire range of electrolyte and glycine concentration studied and it increases as the concentration of glycine increases. The experimental data presented in Tables 1-3 and those reported previously [8] suggest that for a fixed glycine concentration, the value of is K_{ϕ} larger at higher electrolyte concentrations. As shown in Fig. 3 for two electrolytes with the same cation the value of K_{ϕ} of glycine is smaller in the presence of the electrolyte with nitrate anion than the electrolyte with chloride anion. For two electrolytes with the same anion the value of K_{ϕ} of glycine is smaller in the presence of the electrolyte with sodium cation than the electrolyte with potassium cation. However, for a fixed glycine and electrolyte concentration, the difference between the value of K_{ϕ} of glycine in the presence of NaCl and KCl is much smaller than the difference between the value of K_{ϕ} of glycine in the presence of NaNO₃ and KNO₃. Also, experimental data show that at lower electrolyte concentrations K_{ϕ} of glycine is less affected by the nature of the cation or the anion of the electrolyte. From the negative values of K_{ϕ} and K_{ϕ}^{0} ,

presented in Tables 1-4, it can be deduced that the water molecules around the glycine molecules are less compressible than the water molecules in the bulk solution. It should be mentioned that K_{ϕ} reflects the interactions between the solute and solvent, which in turn can be related to the hydration of the molecules. Hydration phenomenon plays an important role in the interactions in water + amino acid + electrolyte systems. This is owing to the doubly charged behaviour of glycine in aqueous solutions, which influences the structure of the water molecules in the vicinity of the glycine molecules. This phenomenon is called elecrostrication, which means the water molecules around a glycine molecule are under the influence of electrostatic field produced by the charged groups of the glycine. At higher electrolyte concentrations, as a result of the mass action law, the charges on more glycine molecules are neutralized and the electrostatic interactions between glycine and water molecules are suppressed therefore the water molecules become more compressible. The difference between the effect of electrolytes with different ions can also be related to the formation of ion-pairs between glycine molecules and simple ions. Since the ion-pairs formed with different ions have different physicochemical characteristics, the value of K_{ϕ} of

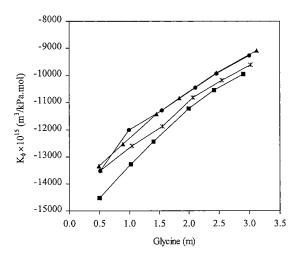


Fig. 3. Effect of glycine concentration on the value of K_{ϕ} of glycine in aqueous solutions at 1.0 molality \bullet : NaCl,*: KCl, \blacktriangle : NaNO₃ or \blacksquare : KNO₃.

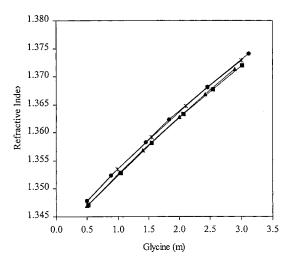


Fig. 4. Effect of glycine concentration on the refractive index of its aqueous solutions in the presence of 1.0 molality •: NaCl, *: KCl, ▲: NaNO₃ or ■: KNO₃.

glycine is different in the presence of different ions.

Fig. 4 depicts the effect of glycine concentration on the refractive index of four water + glycine + electrolyte systems studied here or in a previous study [8] at 1.0 molality electrolyte concentration. The electrolytes studied are KCl, NaCl, KNO₃ and NaNO₃. As shown in this figure, for a fixed glycine and electrolyte concentration, the nature of the cation of the electrolyte does not influence the refractive index of the solution while the nature of the anion of the electrolyte affects the refractive index of the solution. The same phenomenon can be observed for the effect of the nature of the cation and the anion of the electrolytes studied on the refractive index of their aqueous solutions without the presence of an amino acid.

4. Conclusions

Experimental data at 298.15 K of density, velocity of sound and refractive index of glycine in aqueous solutions KCl, KNO₃ and NaNO₃ have been reported. The values of apparent molar volume and isentropic compressibility of glycine were calculated from the measured data. The obtained results in this work and those previously

measured for water + glycine + NaCl were comparatively studied. The results indicated that the interactions between glycine and an electrolyte influence its properties in aqueous solutions. The results also showed that the nature of both the cation and the anion of the electrolyte play an important role in the interactions between an electrolyte and glycine. For all four electrolytes studied, it was found that these interactions result in a positive transfer volume of glycine from one electrolyte solution to another with higher electrolyte concentration. This may be an indication of the increase in the volume of glycine with an increase in the electrolyte concentration. It was also found that the value of K_{ϕ} of glycine is negative throughout the entire range of glycine and electrolyte concentration studied. The negative value of K_{ϕ} of glycine implied that the water molecules around the glycine molecules were less compressible than the water molecules in the bulk solution. These effects were attributed to the doubly charged behaviour of glycine and the formation of ion-pairs with weak non-covalent bonds between the charged groups of glycine and the ions present in the solution. The reason for the different effect of different ions on the properties of glycine in aqueous electrolyte solutions was related to the different physicochemical characteristics of the ion-pairs formed with different ions. This effect was also related to the size difference of different ions.

Acknowledgements

This work was partly financed by the CICYT, Spain, project QUI 97–1078.

References

- M. Mizuguchi, M. Sakurai, K. Nitta, J. Solut. Chem. 26 (1997) 579.
- [2] M. Iqbal, R.E. Verrall, J. Phys. Chem. 91 (1987) 967.
- [3] F.J. Millero, A. Lo Surdo, C. Shin, J. Phys. Chem. 87 (1978) 784.
- [4] G.R. Hedwig, J. Chem. Thermodyn. 23 (1991) 123.
- [5] G.R. Hedwig, H. Høiland, J. Solut. Chem. 20 (1991)
- [6] M.K. Khoshkbarchi, J.H. Vera, Ind. Eng. Chem. Res. 35 (1996) 2735.
- [7] M. Natarajan, R.K. Wadi, H.C. Gaur, J. Chem. Eng. Data 35 (1990) 87.
- [8] A. Soto, A. Arce, M.K. Khoshkbarchi, accepted for publication, J. Biophys. Chem., 1998.
- [9] K.D. Collins, Biophys. J. 72 (1997) 65.
- [10] M.K. Khoshkbarchi, J.H. Vera, Ind. Eng. Chem. Res. 36 (1997) 2445.
- [11] R.D. Shannon, Acta Crystallogr. A 32 (1976) 751.
- [12] R. Herrero, I. Brandariz, S. Fiol, M. Sastre de Vicente, Collect. Czech. Chem. Commun. 58 (1993) 1269.
- [13] T. Vilarino, M. Sastre de Vicente, J. Phys. Chem. 100 (1996) 16378.